

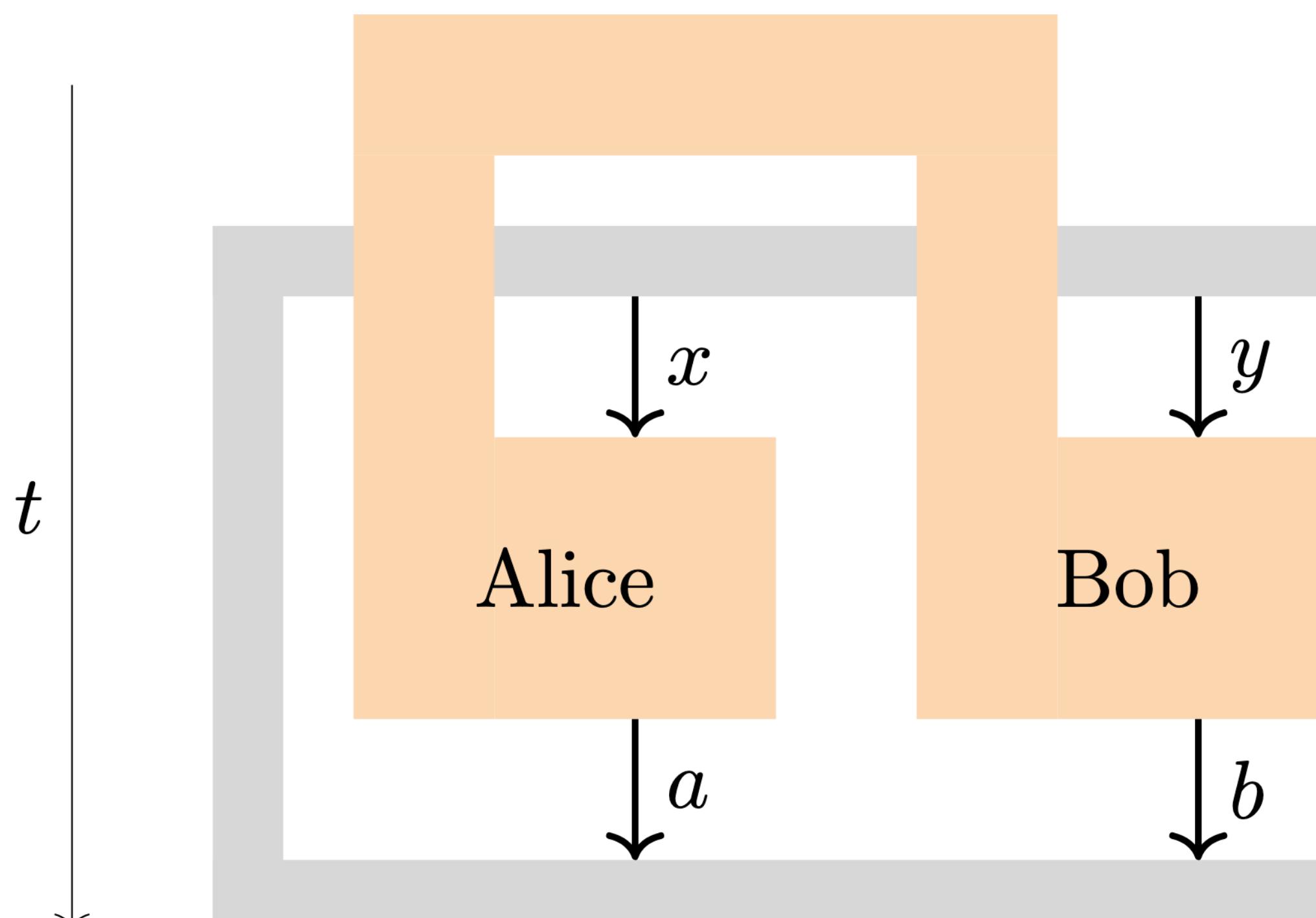
Quantitative quantum soundness for all multipartite compiled nonlocal games

Xiangling Xu 许湘灵, Team PhiQuS, Inria Saclay

10/12/2025, Quantum Seminar

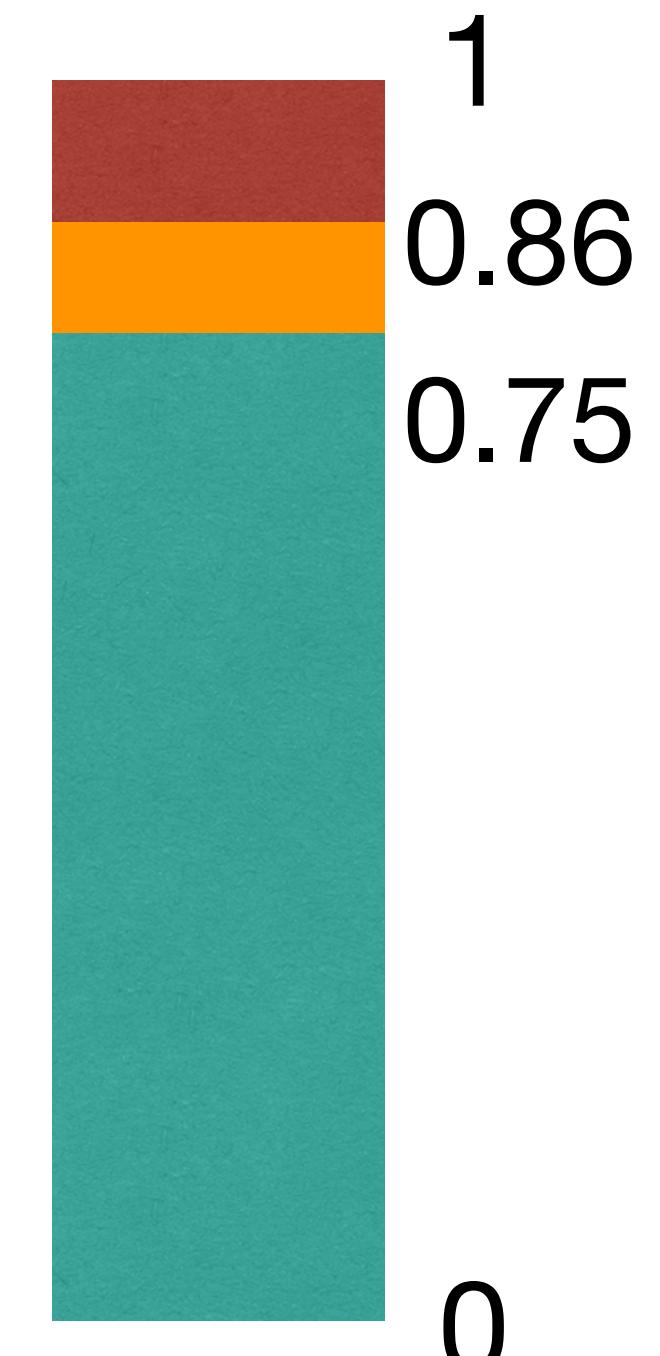
With Matilde Baroni, Igor Klep, Dominik Leichtle, Marc-Olivier Renou, Ivan Šupić, Lucas Tendick

Device-independent non-locality 101

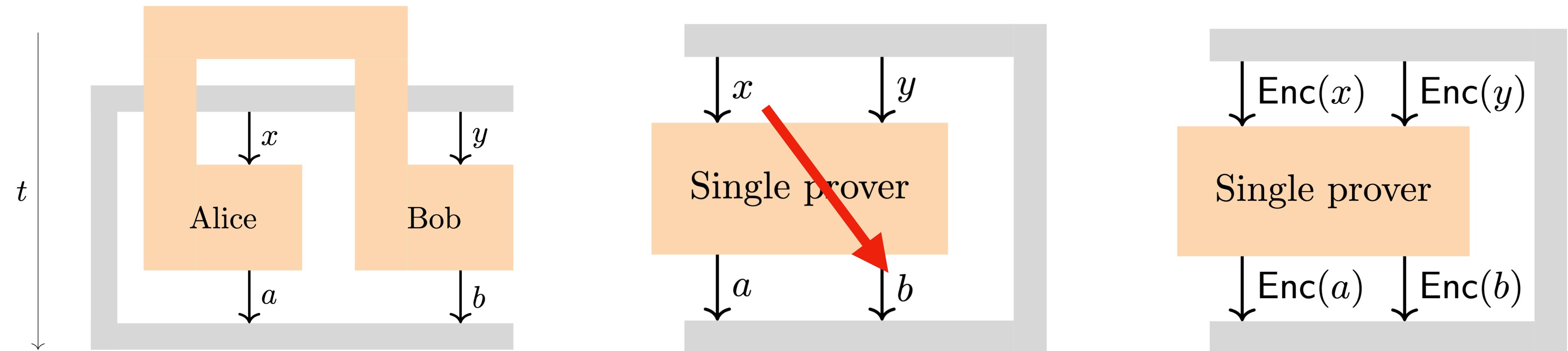


$$\text{CHSH: } a \oplus b = x \cdot y$$

The more nonlocal a physical theory, the higher the score

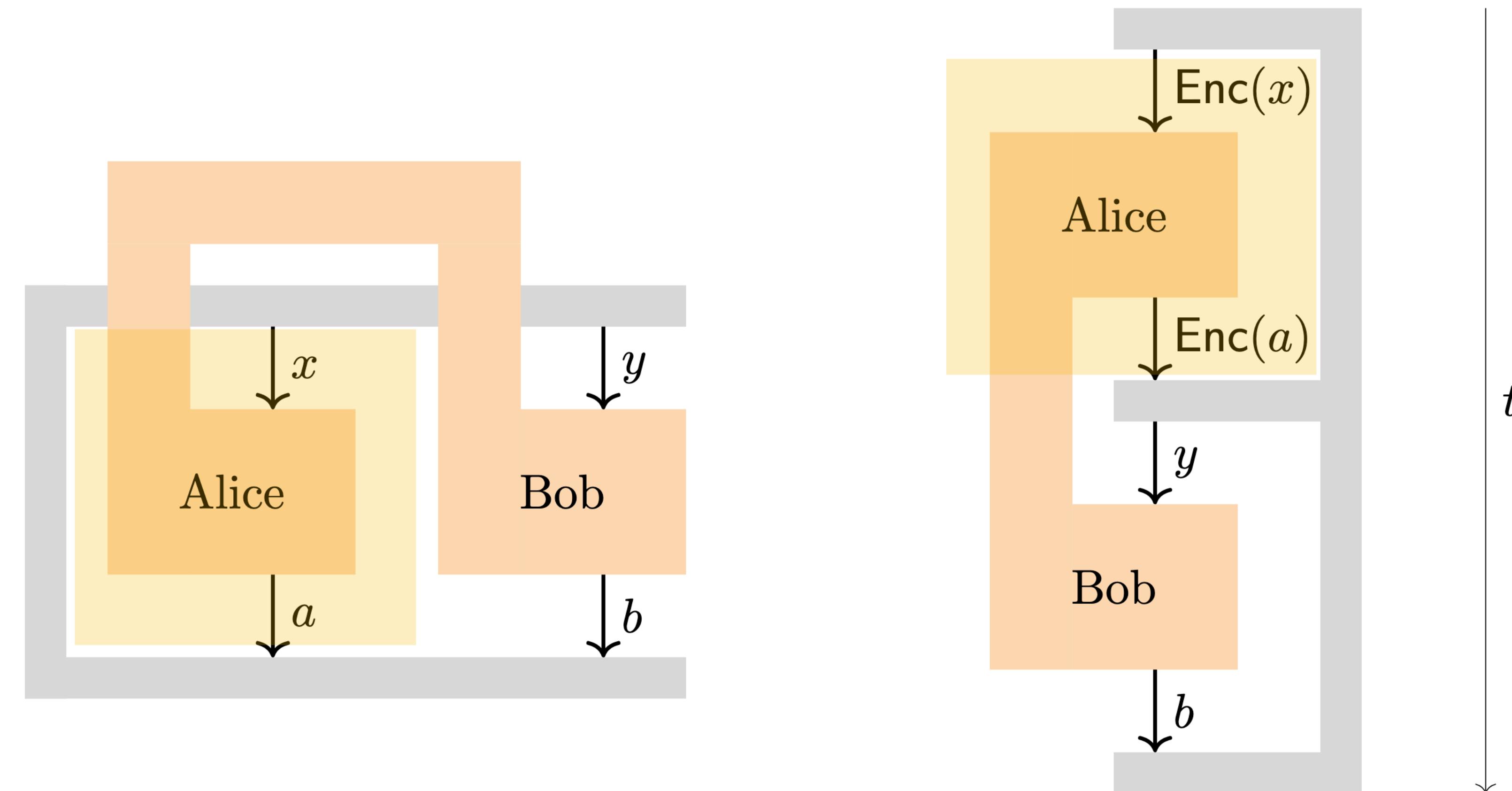


Removing space-like separation using cryptography



- Goal: performing Bell test on a single untrusted device?
- Idea: Encryption acts as a barrier

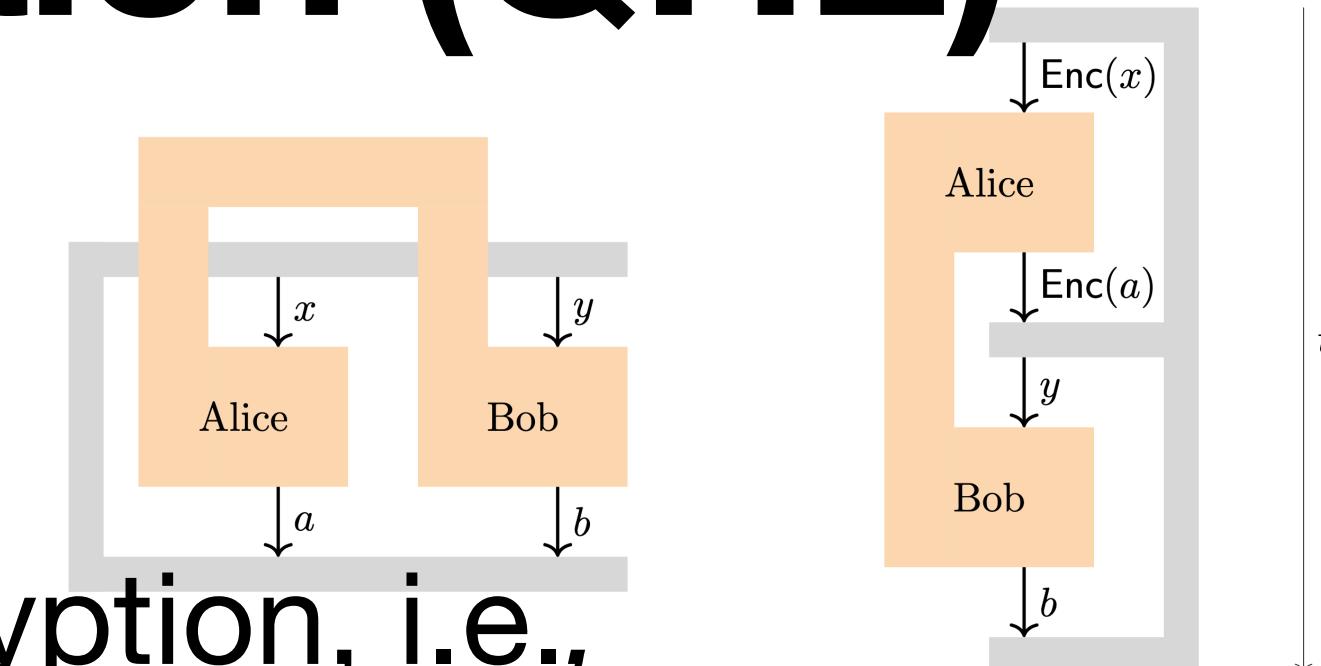
KLVY compiler



Works for all k players games!

Quantum Homomorphic Encryption (QHE)

1. Homomorphic: the prover's operations commute with encryption, i.e., computations make sense even on encrypted data without decrypting
2. Security parameter λ
 - Models both computational power and encryption strength
 - A λ -efficient prover can run circuits with $\text{poly}(\lambda)$ quantum gates
 - λ -secure QHE safe against all λ -efficient provers' attacks



Properties of KLVY compiler

- Are compiled games trustworthy?
- Completeness: honest strategies reaches the ideal score
- Soundness: cheating strategies cannot exceed physical limits

1. Classical soundness for all games [KLVY22]

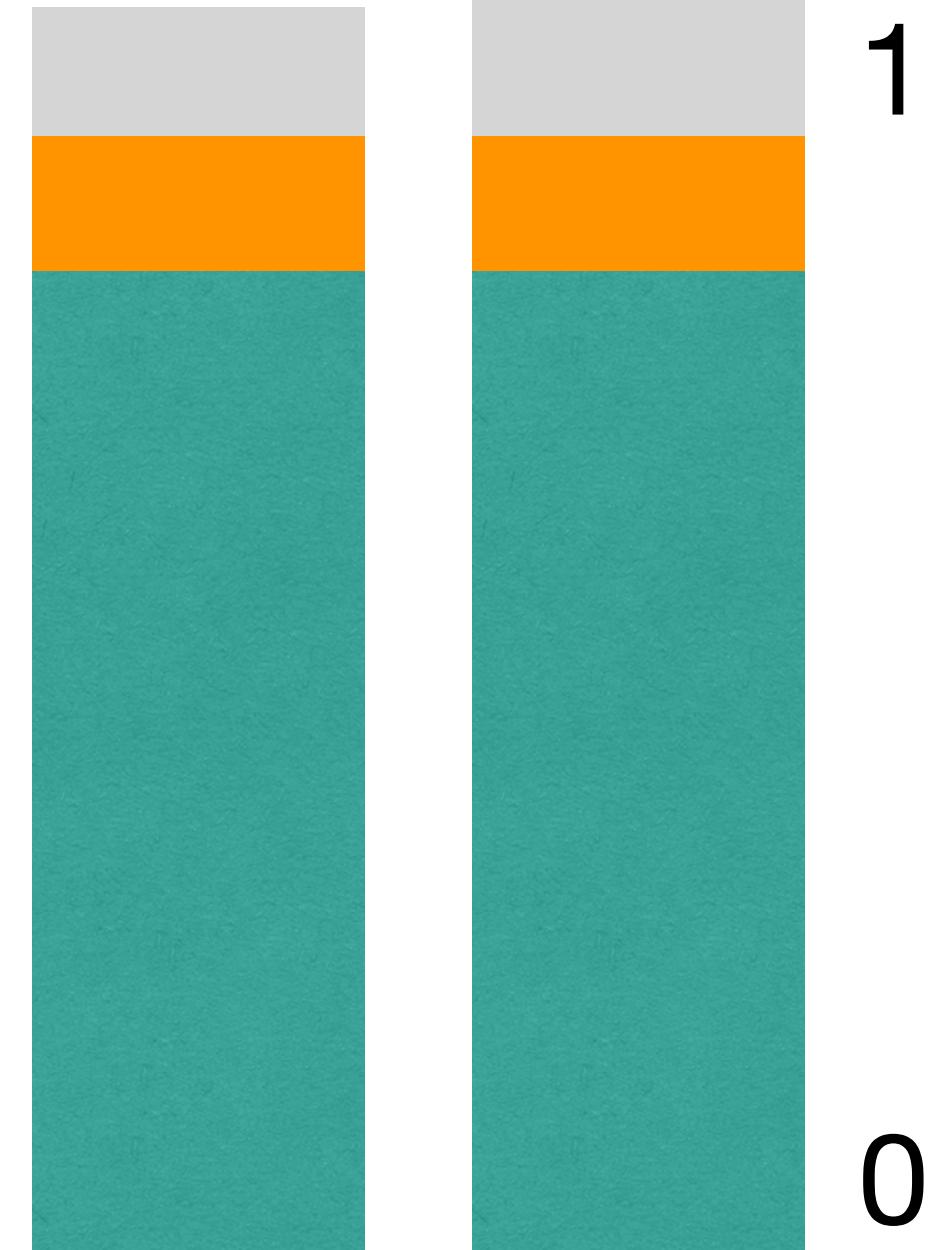
2. Quantum completeness for all games [KLVY22]

3. Quantum soundness for some bipartite games

4. Asymptotic quantum soundness for all bipartite games [KMPSW24]

5. This year with [BLJŠ25, KPRSTXZ25, BKLRŠTX25]:

quantitative quantum soundness for all multipartite games



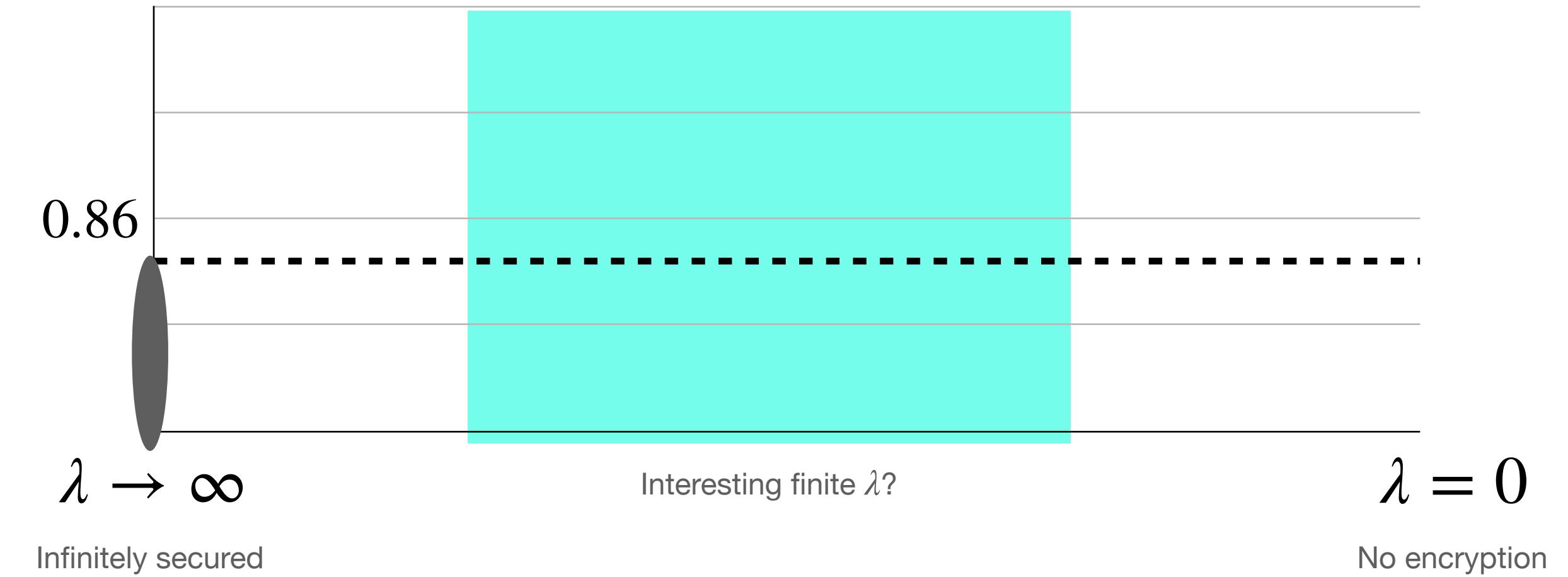
Nonlocal Compiled

[KLVY22] arXiv: 2203.15877

[KMPSW24] arXiv: 2408.06711

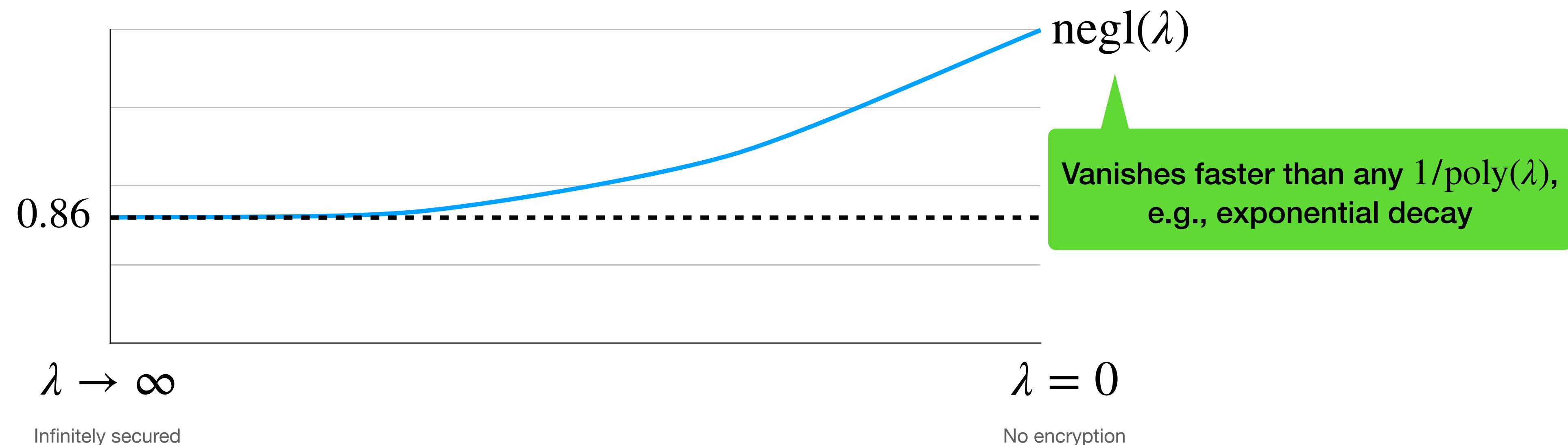
Asymptotic bipartite soundness [KMPSW24]

- Bipartite game, as $\lambda \rightarrow \infty$
(encryption infinitely strong)
- Compiled score of efficient provers
 \leq true nonlocal quantum score
- For all multipartite games, where nonlocality phenomenon is richer and spatial separation is even more intractable? Solved [BLJŠ25]
- In practice, λ is finite, how sound can the compiled score still be?



Main results: [BKLRS̆TX25]

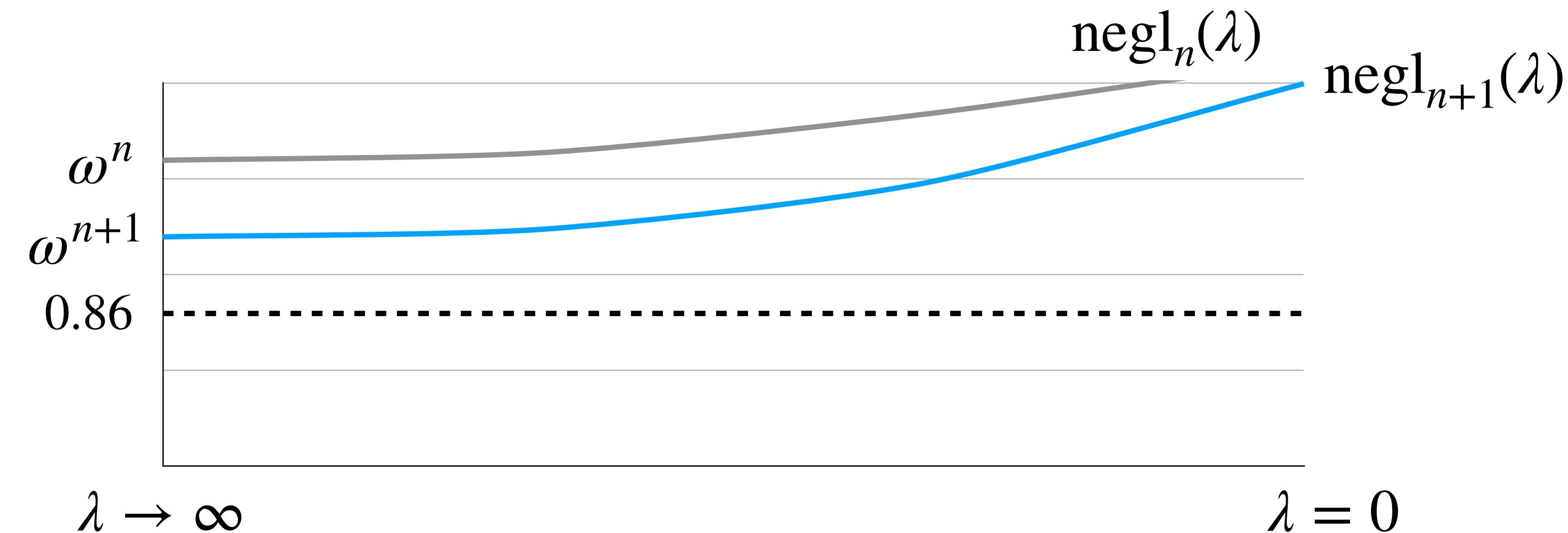
- Every multipartite game with **finite-dim optimal strategies** is quantitative quantum sound
- At finite λ , compiled score of an efficient prover can only beat the nonlocal quantum score by a negligible amount



**Nonetheless, we have bounds for all games.
-> let's get technical :/**

General main results: [BKLRSŁTX25]

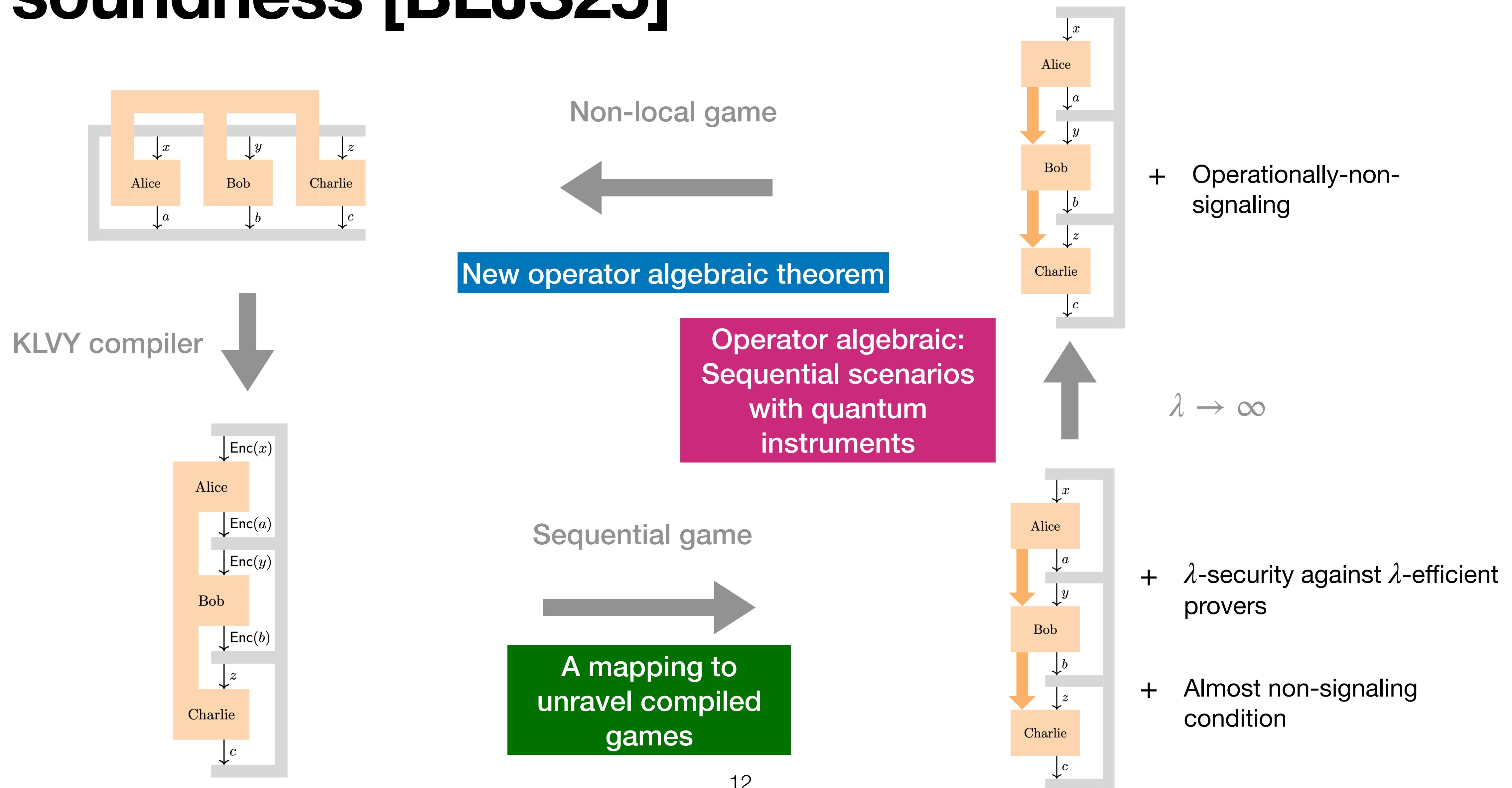
- A **sequential NPA-like hierarchy** for **quantum instruments/completely positive maps**: For all games, for every $n \geq 1$, has computable sequence $\omega^n \searrow \text{opt}$
 - Key from asymptotic to quantitative
 - Key from bipartite to multipartite
- For every n and λ , compiler score cannot beat ω^n more than a negligible amount
- The larger the **Goal of the remaining of the talk: understand this hierarchy and why does it help**



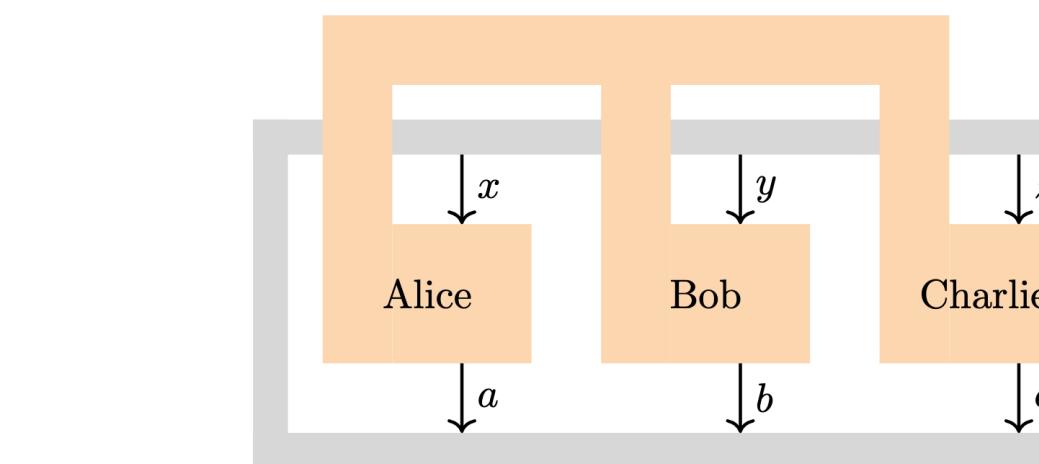
Plan for the rest of the talk

- Motivation to sequential quantum scenarios for compiled games
- The standard NPA hierarchy for nonlocal games
- Sequential scenarios with quantum instruments
- Sequential NPA-like hierarchy
- Note: we show tripartite nonlocal games for simplicity, the following generalizes to any number of players

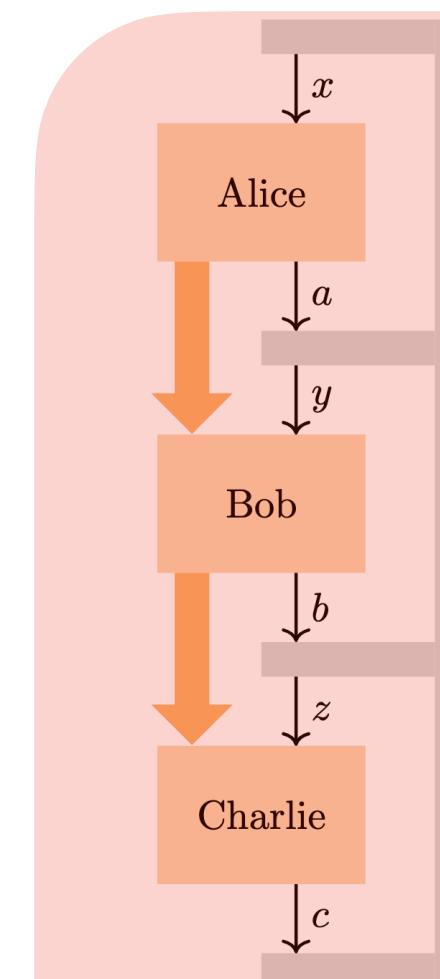
Outline for multipartite asymptotic soundness [BLJS25]



Asymptotic to quantitative: [KPRSTXZ25, BKLRSSTX25]

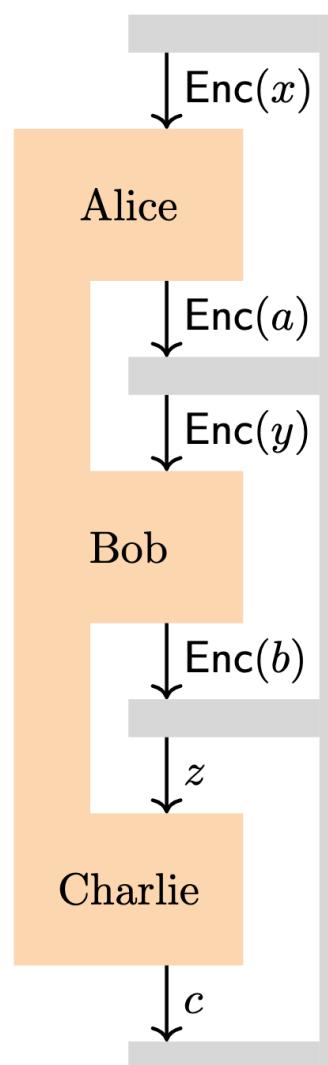


Non-local game



+ Operationally-non-signaling

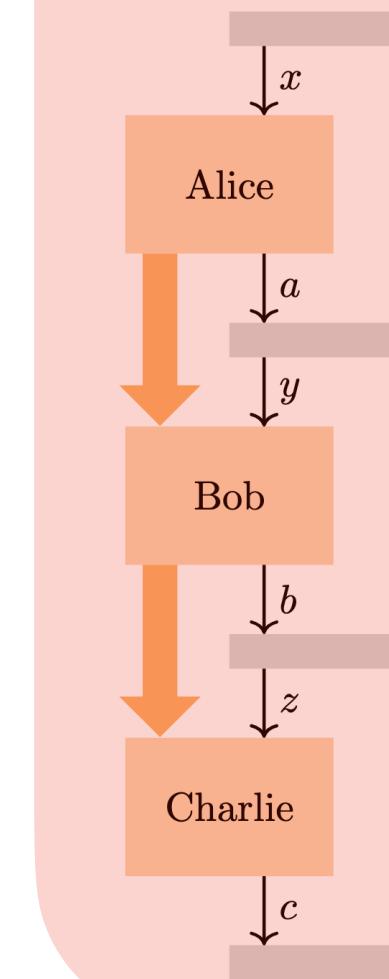
KLVY compiler



Sequential scenarios
formulated with
quantum instruments

Sequential game

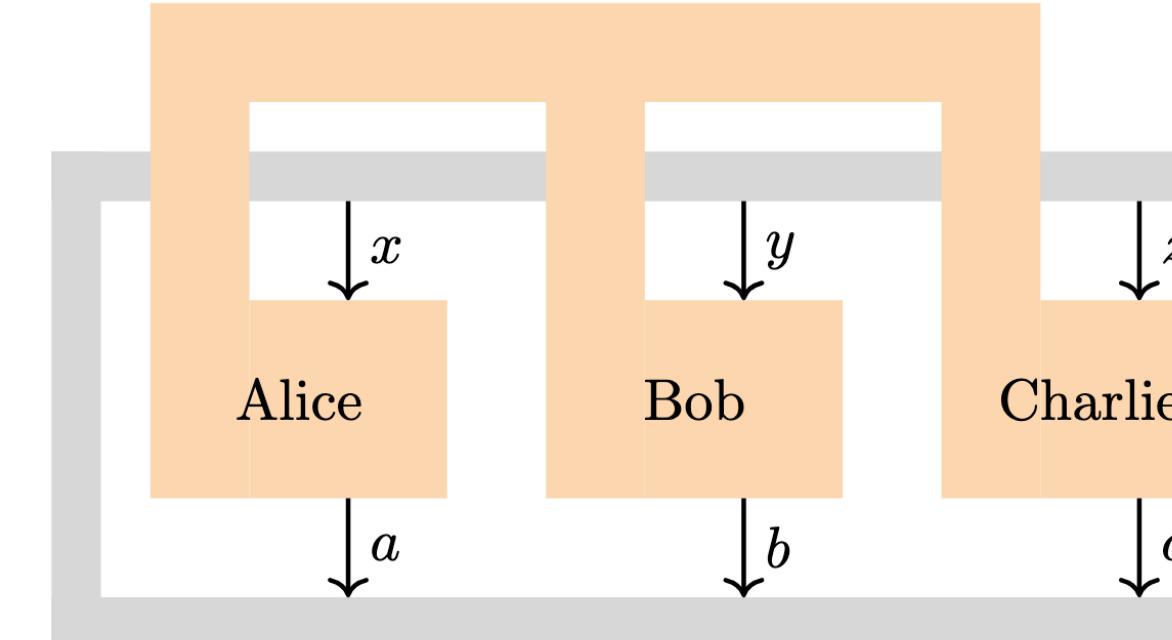
NPA hierarchy for
sequential
scenarios!



+ Almost non-signaling
condition from security
against efficient provers

$\lambda \rightarrow \infty$

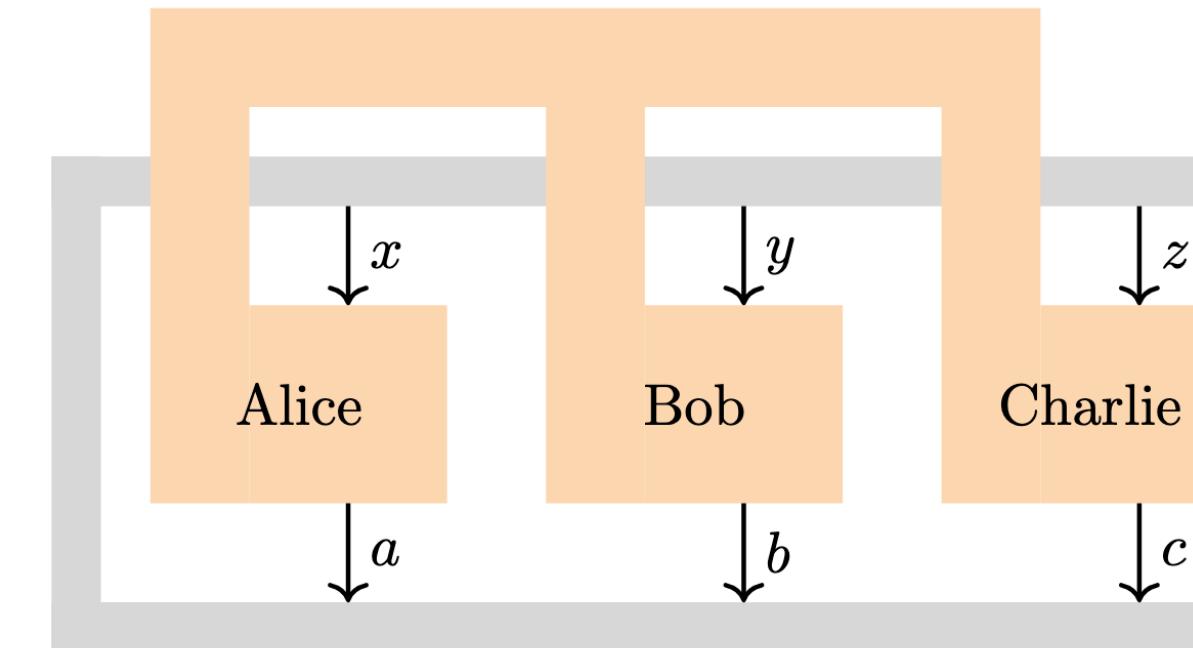
Commuting quantum strategies C_{qc}



- Hilbert space H with a density operator σ
- Mutually commuting measurement PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$
- Born's rule: $p(abc|xxyz) = \text{Tr}(\sigma \cdot A_{a|x} B_{b|y} C_{c|z}) \in C_{qc}$
- Maximizing the winning probability := commuting quantum score:
$$\omega_{qc} = \max_{p \in C_{qc}} \sum_{a,b,c,x,y,z} V(abcxyz) \cdot p(abc|xxyz)$$

Rule of the nonlocal game

Bounding the quantum score ω_{qc} over C_{qc}

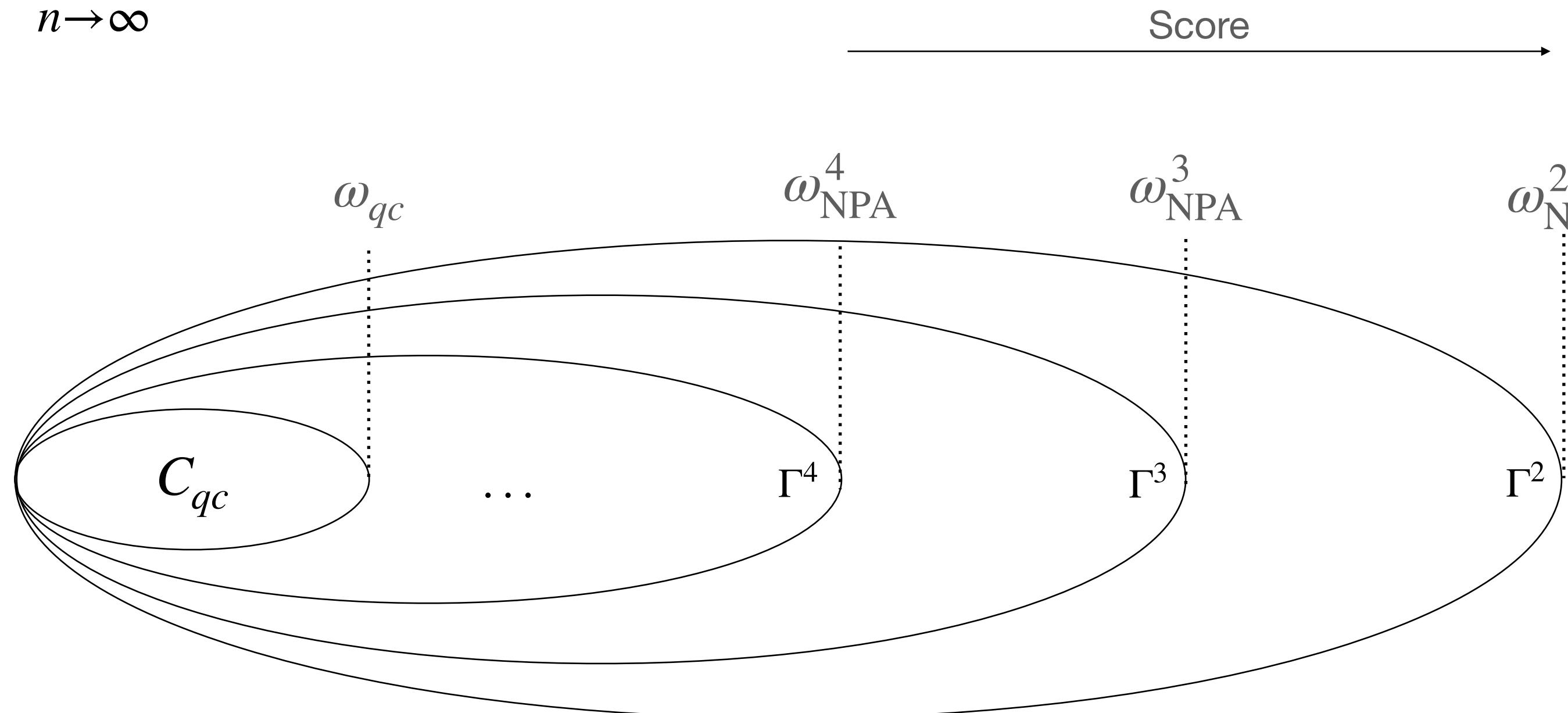


- Lower bound is easy by inner approximation of C_{qc}
- E.g. gradient descent on strategies of 2dim, then 3dim, ...
- Upper bound needs outer approximation of C_{qc} : NPA hierarchy [NPA2008]

A hierarchy of pseudo-quantum strategies

- Will sketch, have sets of pseudo-quantum strategies $\Gamma^n, n \geq 2$, such that

$$p \in C_{qc} = \lim_{n \rightarrow \infty} \Gamma^n \subset \dots \subset \Gamma^4 \subset \Gamma^3 \subset \Gamma^2$$



- Characterizing C_{qc} from the outside
- Computable sequence of upper bounds $\omega_{NPA}^2 \geq \omega_{NPA}^3 \geq \omega_{NPA}^4 \geq \dots \searrow \omega_{qc}$

NPA hierarchy: moment matrix Γ^2

- Suppose we do state/PVMs s.t. have $p(abc|x,y,z) = \text{Tr}(\sigma A_{a|x} B_{b|y} C_{c|z})$, easy to calculate expectation values: $\text{Tr}(\sigma A_{a|x})$, $\text{Tr}(\sigma A_{a|x}^* C_{c|z})$, ...
- Put them into a moment matrix Γ^2 , indexed by $1, A_{a|x}, A_{a|x} A_{a'|x'}, \dots$ (up to length 2).

$$\begin{array}{c}
 \begin{array}{ccccccc}
 1 & A_{a|x} & B_{b|y} & C_{c|z} & & \dots \\
 \hline
 1 & \text{Tr}(\sigma A_{a|x}) & \text{Tr}(\sigma B_{b|y}) & \text{Tr}(\sigma C_{c|z}) & & \\
 \text{Tr}(\sigma A_{a|x}) & \text{Tr}(\sigma A_{a|x} B_{b|y}) & \text{Tr}(\sigma A_{a|x} C_{c|z}) & & \\
 \text{Tr}(\sigma B_{b|y}) & \text{Tr}(\sigma B_{b|y} C_{c|z}) & & \\
 \text{Tr}(\sigma C_{c|z}) & & & \\
 \dots & & & & & & \\
 \end{array} \\
 \begin{array}{c}
 1 \\
 (A_{a|x})^\dagger \\
 (B_{b|y})^\dagger \\
 (C_{c|z})^\dagger \\
 \dots
 \end{array}
 \end{array}$$

- Rule: $\Gamma_{B_{b|y}, B_{b|y}} = \text{Tr}(\sigma B_{b|y}^* B_{b|y}) = \text{Tr}(\sigma B_{b|y}) = \text{Tr}(\sigma \text{Id}^* \cdot B_{b|y}) = \Gamma_{1, B_{b|y}}$

NPA hierarchy: moment matrix Γ^2

- Zoom out to length 2

$$\Gamma_{A_{a|x}B_{b|y},C_{c|z}} = \text{Tr}(\sigma(A_{a|x}B_{b|y})^*C_{c|z}) = \text{Tr}(\sigma A_{a|x}B_{b|y}C_{c|z}) = p(abc|xyz)$$

$$\begin{bmatrix} & \mathbb{1} & A_{a|x} & B_{b|y} & C_{c|z} & A_{a|x}A_{a'|x'} & \dots \\ \mathbb{1} & 1 & & & & & \\ (A_{a|x})^\dagger & & & & \text{Tr}(\sigma B_{b|y}) & & \\ (B_{b|y})^\dagger & & & & & & \\ (C_{c|z})^\dagger & & & & & & \\ (A_{a|x}A_{a'|x'})^\dagger & & & & \text{Tr}(\sigma A_{a'|x'}A_{a|x}C_{c|z}) & & \\ (A_{a|x}B_{b|y})^\dagger & & & & p(abc|xyz) & & \\ \dots & & & & & & \end{bmatrix}$$

- Γ^2 is semidefinite positive, symmetric, satisfies many linear constraints...
- $p \in \Gamma^2$ pseudo-quantum strategy if such a matrix exists

NPA hierarchy: moment matrix Γ^3 and more

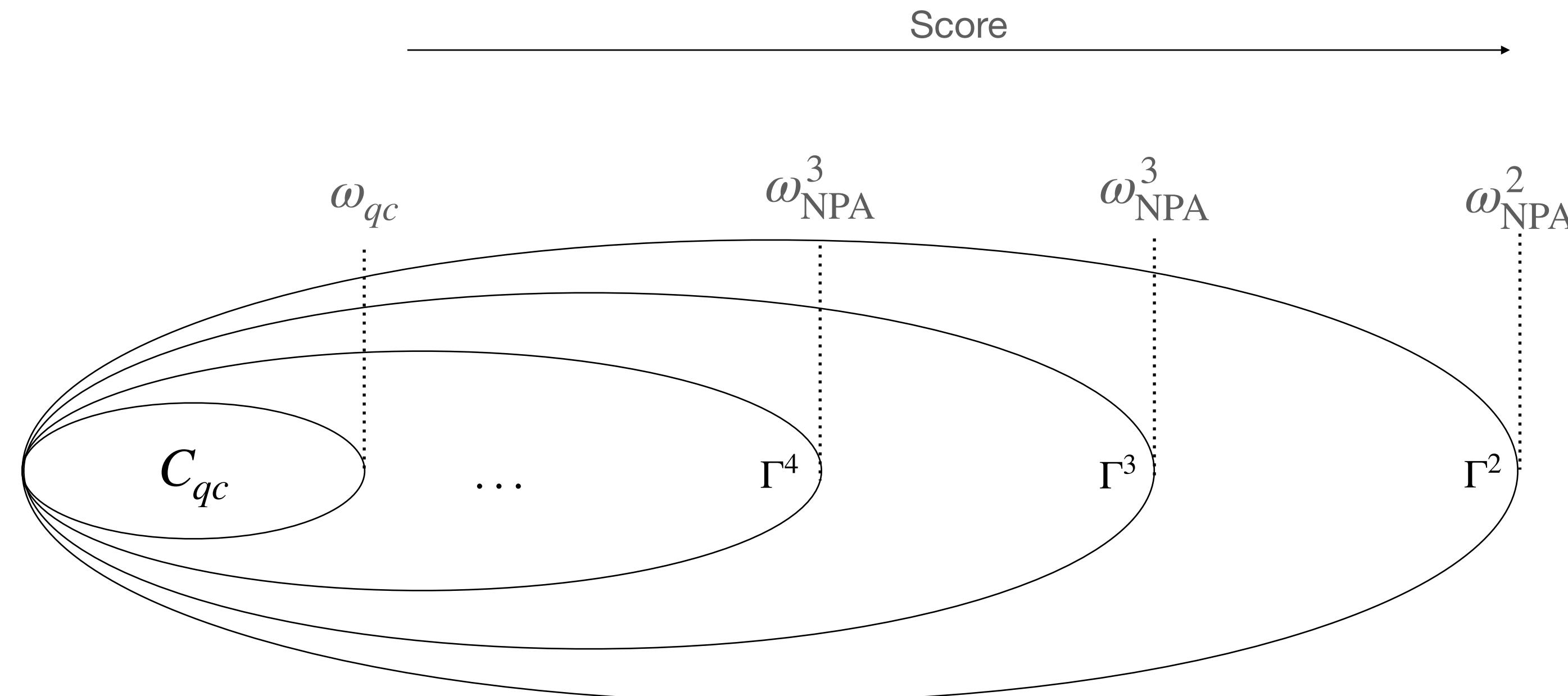
- Longer indices, such as $A_{a|x}B_{b|y}C_{c|z}$, of length 3, to get a bigger matrix Γ^3

$$\begin{bmatrix} & 1 & A_{a|x} & B_{b|y} & C_{c|z} & \dots \\ 1 & & & & & \\ (A_{a|x})^\dagger & & & & \text{Tr}(\sigma B_{b|y}) & \\ (B_{b|y})^\dagger & & & & & \\ (C_{c|z})^\dagger & & & & & \\ (A_{a|x}A_{a'|x'})^\dagger & & & & \text{Tr}(\sigma A_{a'|x'}A_{a|x}C_{c|z}) & \\ (A_{a|x}B_{b|y})^\dagger & & & & p(abc|xyz) & \\ \dots & & & & & \\ (A_{a|x}B_{b|y}C_{c|z})^\dagger & & \text{Tr}(\sigma A_{a|x}B_{b|y}C_{c|z}) & & & \\ \dots & & & & & \end{bmatrix}$$

This is the **Heisenberg picture!**
Focusing on the expectations
rather than the density
operators

- Containing Γ^2 as a submatrix: $\Gamma^3 \implies \Gamma^2$
- Repeat to get $\Gamma^2, \Gamma^3, \Gamma^4, \dots$ A hierarchy of moment matrices for pseudo-quantum strategies

A hierarchy of pseudo-quantum strategies

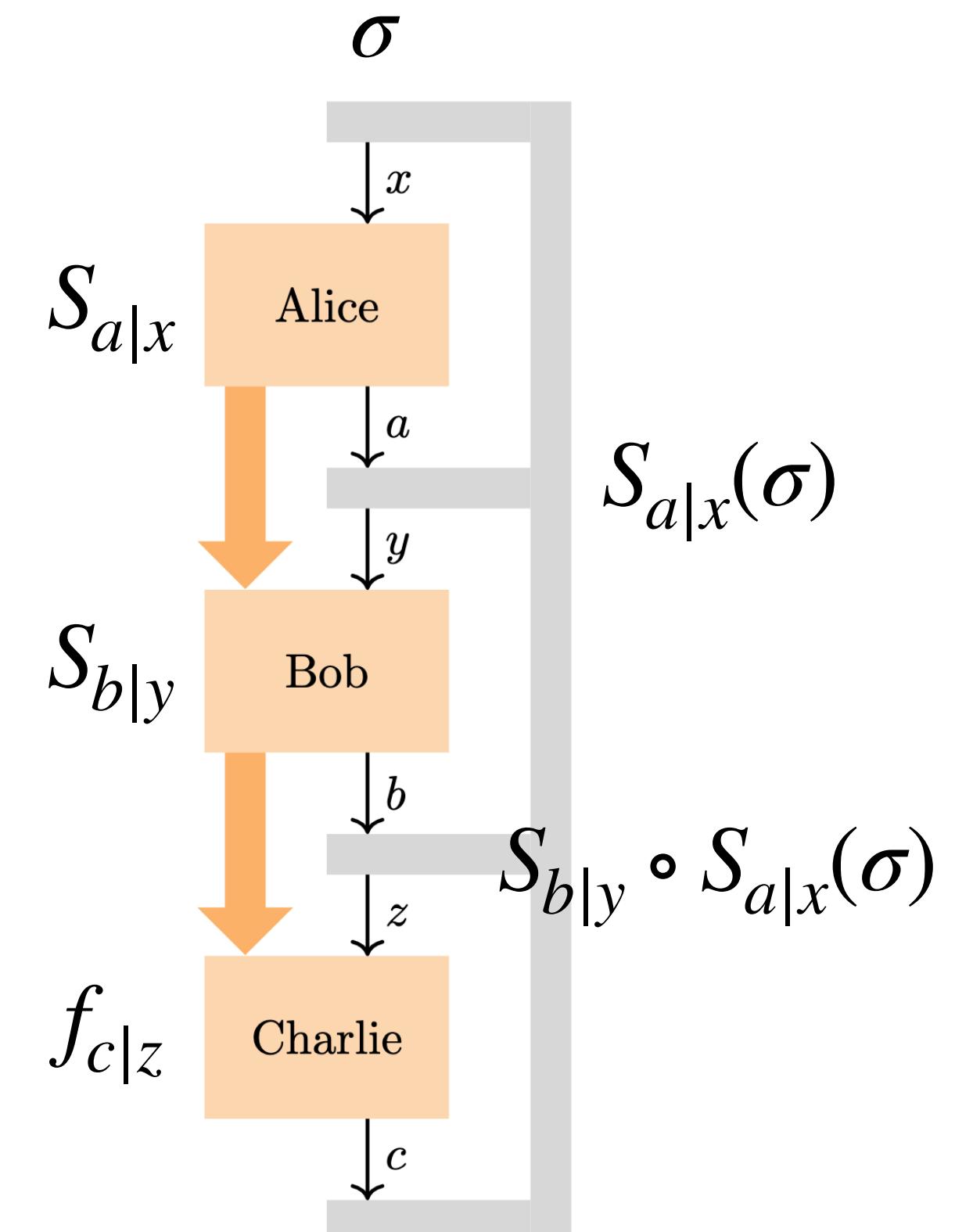


- Finding Γ^n and optimization can be done with semidefinite programs (SDPs)
- Computable sequence of upper bounds $\omega_{\text{NPA}}^2 \geq \omega_{\text{NPA}}^3 \geq \omega_{\text{NPA}}^4 \geq \dots \searrow \omega_{qc}$

Sequential quantum scenarios C_{seq}

- Hilbert space H with a density operator σ
- Commuting PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ cannot describe sequential scenarios
- Completely positive maps
An example:

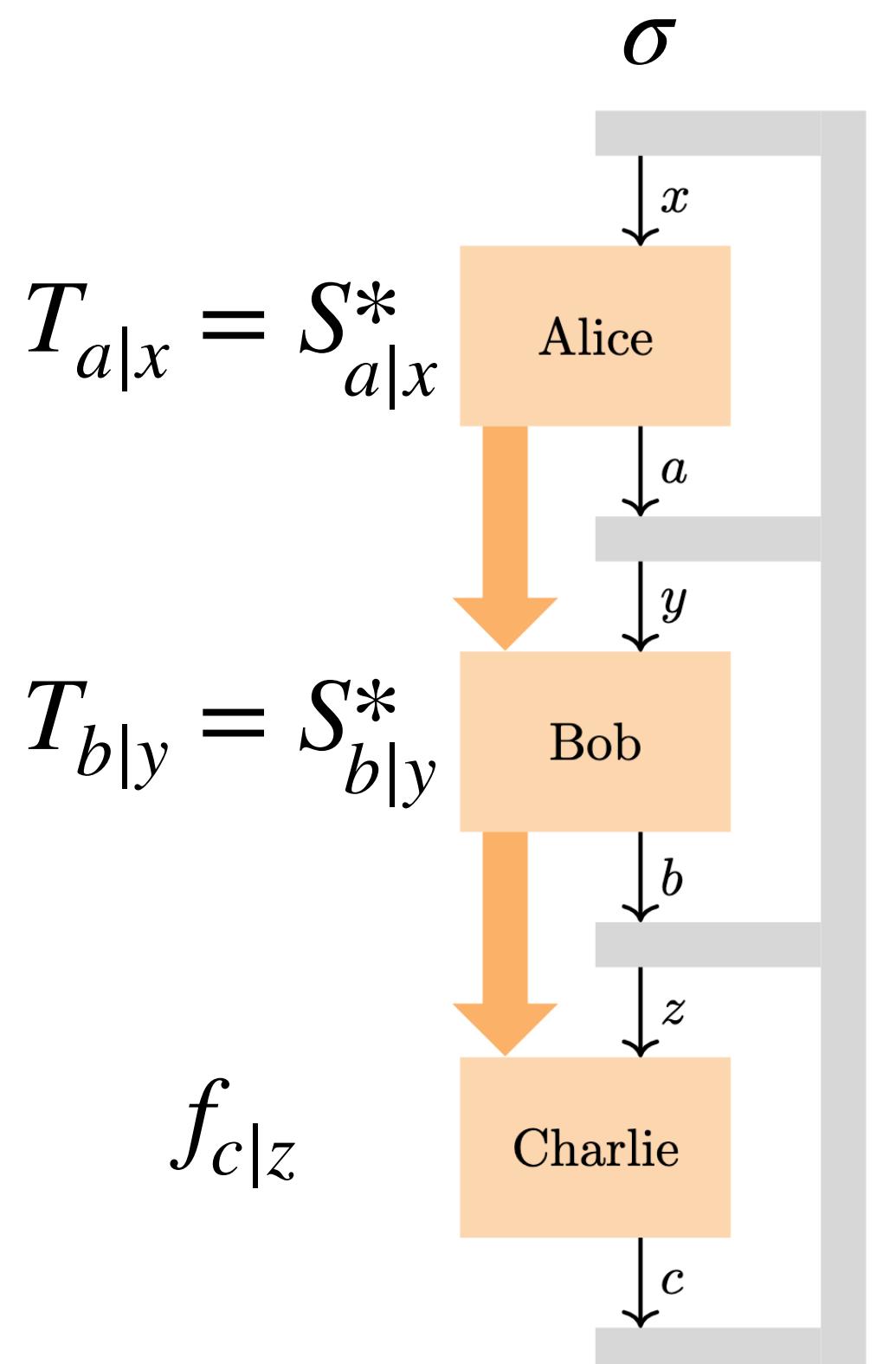
$$S_{a|x}(\cdot) = A_{a|x}^* \cdot A_{a|x}$$
- Instead, quantum instruments $\{S_{a|x}\}$, $\{S_{b|y}\}$ and PVM $\{f_{c|z}\}$
- $p(abc|x,y,z) = \text{Tr}(f_{c|z} \cdot S_{b|y} \circ S_{a|x}(\sigma)) \in C_{\text{seq}}$
- Operationally-non-signaling: $\sum_a S_{a|x} = \sum_b S_{b|y} = \text{id}$
- But not easy to write as an NPA-like hierarchy!



Sequential quantum scenarios C_{seq} : the Heisenberg picture

$$p(abc|x,y,z) = \text{Tr}(f_{c|z} \cdot S_{b|y} \circ S_{a|x}(\sigma)) = \text{Tr}(S_{b|y}^*(f_{c|z}) \cdot S_{a|x}(\sigma)) = \text{Tr}(S_{a|x}^* \circ S_{b|y}^*(f_{c|z}) \cdot \sigma)$$

- The trace dual quantum instruments $T_{a|x} = S_{a|x}^*$, $T_{b|y} = S_{b|y}^*$
- Equivalently: $p(abc|x,y,z) = \text{Tr}(T_{a|x} \circ T_{b|y}(f_{c|z}) \cdot \sigma) \in C_{\text{seq}}$
- Operationally-non-signaling: $\sum_a T_{a|x} = \sum_b T_{b|y} = \text{id}$



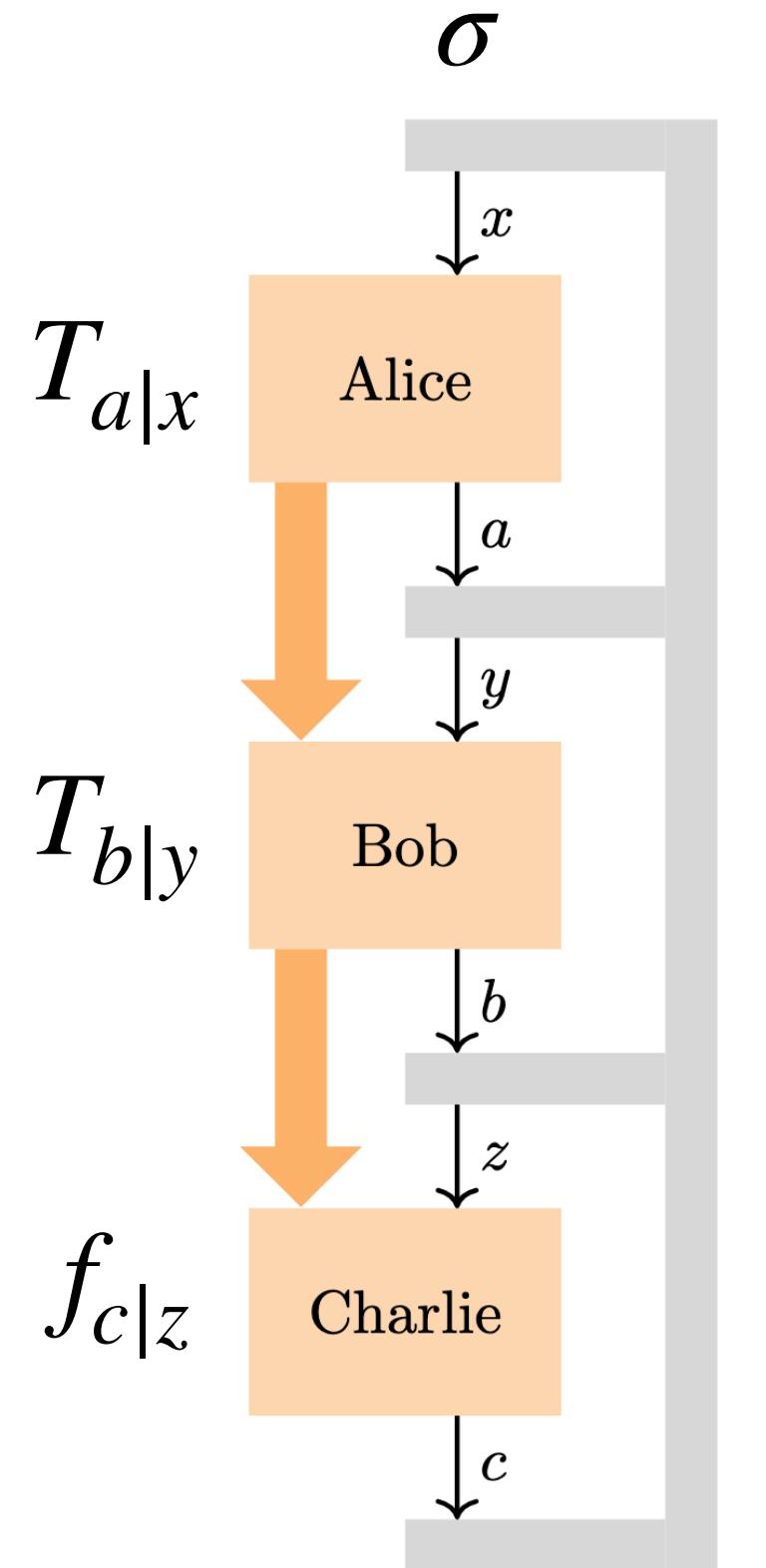
Sequential NPA hierarchy

- If we have a sequential strategy:

$p(abc|xxyz) = \text{Tr}(T_{a|x} \circ T_{b|y}(f_{c|z}) \cdot \sigma)$ s.t. $T_{a|x}, T_{b|y}$ operationally-non-signaling, $f_{c|z}$ PVMs

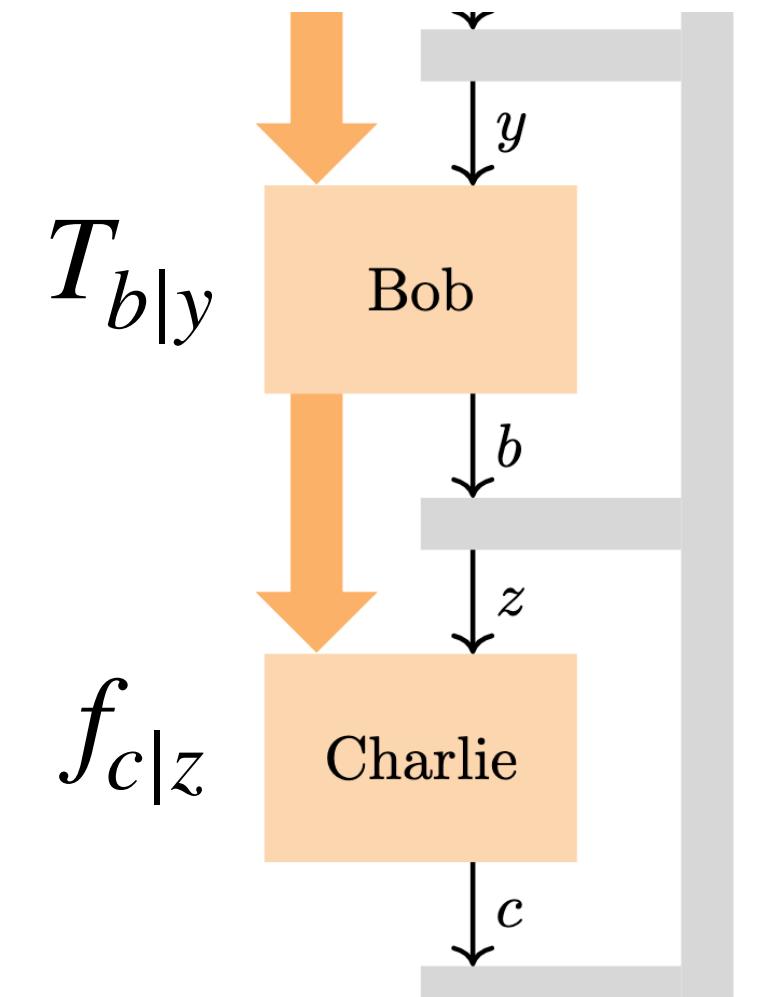
- Can calculate expectations values and arrange them into moment matrices $\tilde{\Gamma}^n$, satisfying many constraints

$$\begin{bmatrix} 1 & p(abc|xxyz) & & & & & \cdots \\ & \text{Tr}(\sigma \cdot T_{a|x}(T_{b|y}(f_{c|z}) \cdot T_{b'|y'}(f_{c'|z'}))) & & & & & \\ & & \text{Tr}(\sigma \cdot T_{a|x} \circ T_{b|y}(f_{c|z} \cdot f_{c'|z'})) & & & & \\ & & & \text{Tr}(\sigma \cdot T_{a|x} \circ T_{b|y}(f_{c|z}) \cdot T_{a'|x'} \circ T_{b'|y'}(f_{c'|z'})) & & & \\ & & & \vdots & & & \end{bmatrix}$$

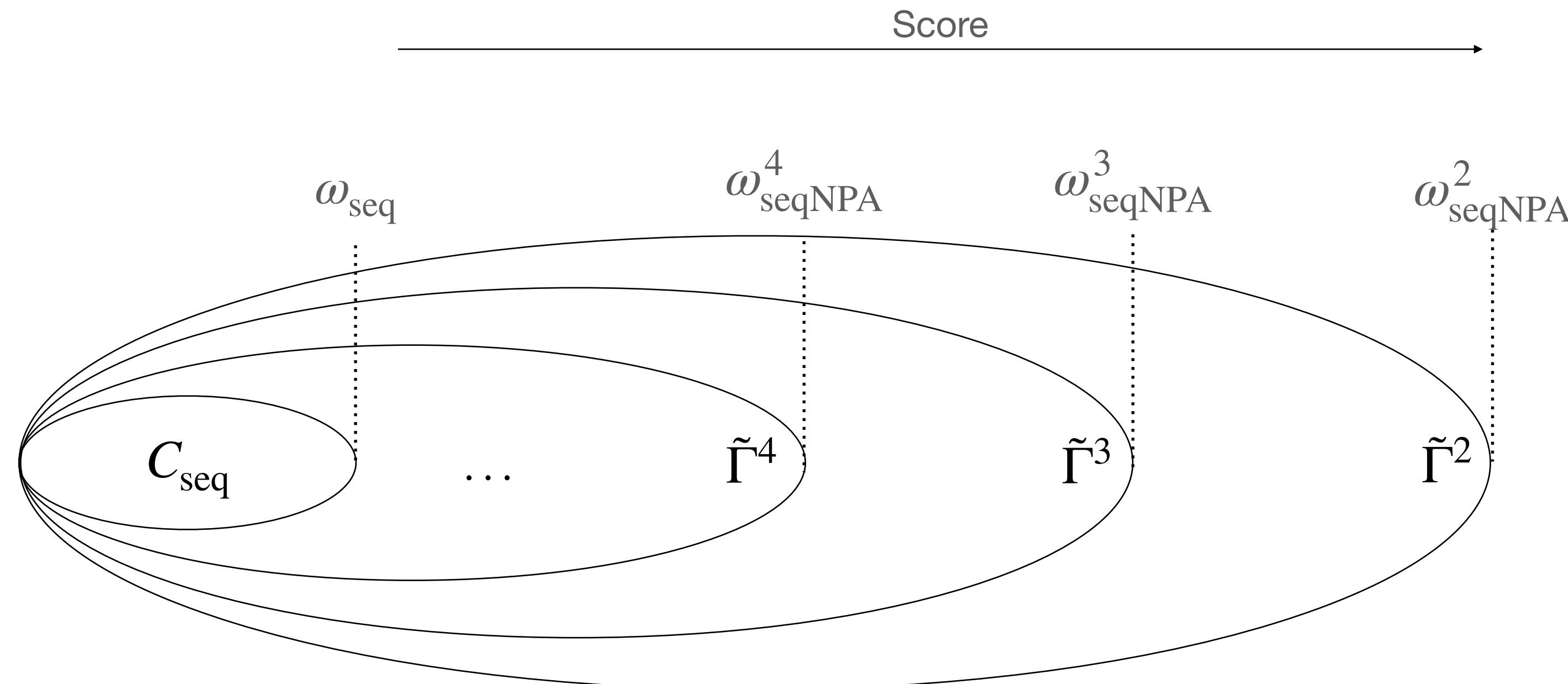


Sequential NPA hierarchy

$$\begin{aligned}
& \left[\begin{aligned}
& 1 \quad p(abc|xyz) \\
& \quad \text{Tr}(\sigma \cdot T_{a|x} (T_{b|y} (f_{c|z}) \cdot T_{b'|y'} (f_{c'|z'}))) \quad \cdots \\
& \quad \text{Tr}(\sigma \cdot T_{a|x} \circ T_{b|y} (f_{c|z} \cdot f_{c'|z'})) \\
& \quad \text{Tr}(\sigma \cdot T_{a|x} \circ T_{b|y} (f_{c|z}) \cdot T_{a'|x'} \circ T_{b'|y'} (f_{c'|z'})) \\
& \quad \vdots \\
& \quad \omega_{\text{3seqNPA}}^n(\mathcal{G}) := \max \sum_{a,b,c,x,y,z} \beta_{abcxyz} \Gamma_{1,f_{abc|xyz}}^{(n)} \\
& \quad \text{s.t.} \quad \Gamma^{(n)} \succeq 0, \quad \Gamma_{1,1}^{(n)} = 1, \quad (\text{PSD and normalization}) \\
& \quad \Gamma_{w,w'}^{(n)} = \Gamma_{v,v'}^{(n)} \quad \text{whenever } w^*w' = v^*v', \quad (\text{Hankel condition}) \\
& \quad L^{2n} \left(w^* \sum_a (T_{a|x}(r^*s) - T_{a|x'}(r^*s))v \right) = 0 \\
& \quad \quad \quad \forall x, x', \forall w, v \in \mathcal{W}_{ABC}^n, \\
& \quad \quad \quad \quad \quad r, s \in \mathcal{W}_{BC}^n, \\
& \quad \quad \quad \quad \quad \deg w + \deg v + \deg r + \deg s \leq 2n \quad (\text{Alice operationally-non-signaling}) \\
& \quad L^{2n} \left(T_{a|x} \left(r^* \sum_b (T_{b|y}(t^*u) - T_{b|y'}(t^*u))s \right) \right) = 0 \\
& \quad \quad \quad \forall a, x, y, y', \\
& \quad \quad \quad \quad \quad r, s \in \mathcal{W}_{BC}^n, \\
& \quad \quad \quad \quad \quad t, u \in \mathcal{W}_C^n, \\
& \quad \quad \quad \quad \quad \deg r + \deg s + \deg t + \deg u \leq 2n \quad (\text{Bob operationally-non-signaling}). \\
\end{aligned} \right]
\end{aligned}$$

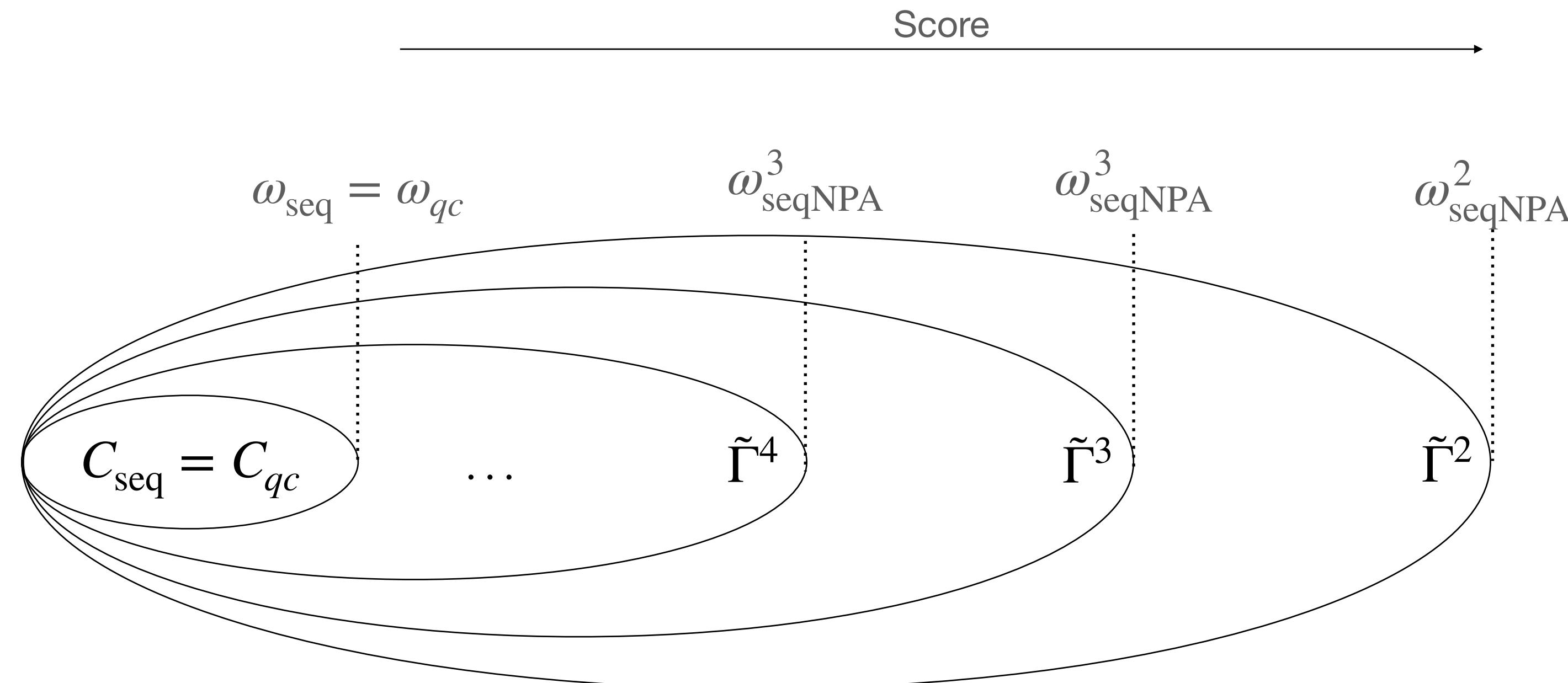


Sequential NPA hierarchy of pseudo sequential quantum strategies



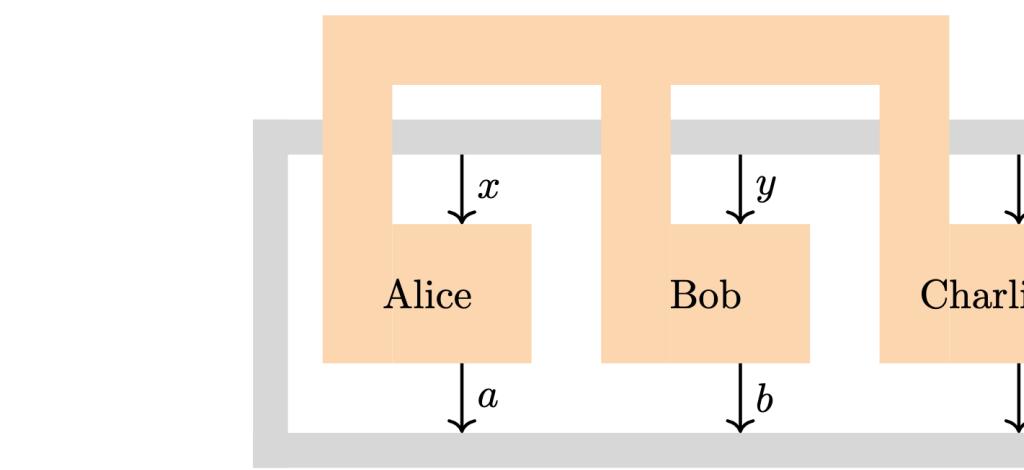
- Finding $\tilde{\Gamma}^n$ and optimization can be done with SDPs
- Computable sequence of upper bounds $\omega_{\text{seqNPA}}^2 \geq \omega_{\text{seqNPA}}^3 \geq \omega_{\text{seqNPA}}^4 \geq \dots \searrow \omega_{\text{seq}}$

Sequential NPA hierarchy



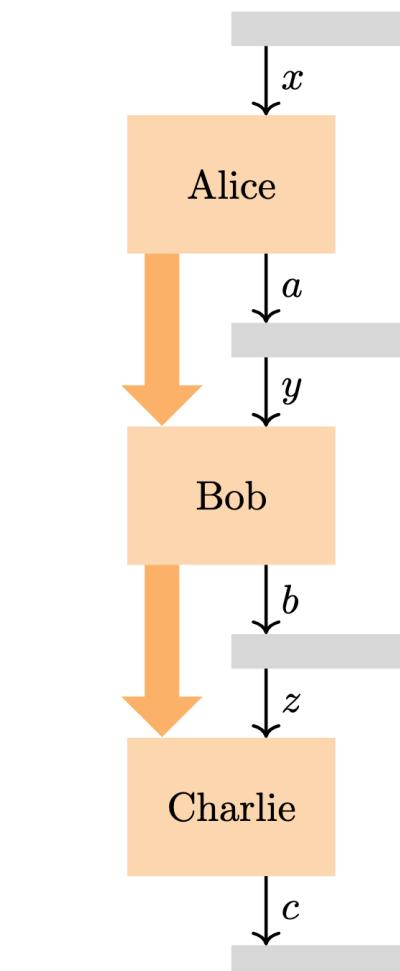
- Thanks to [BLJŠ25], we actually have $C_{\text{seq}} = C_{qc}$!
- SDP-computable sequence of upper bounds $\omega_{\text{seqNPA}}^2 \geq \omega_{\text{seqNPA}}^3 \geq \omega_{\text{seqNPA}}^4 \geq \dots \searrow \omega_{qc}$

Asymptotic to quantitative: [KPRSTXZ25, BKLRSSTX25]



Non-local game

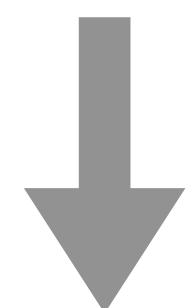
$$\omega_{\text{seqNPA}}^1 \geq \omega_{\text{seqNPA}}^2 \geq \dots \geq \omega_{\text{qc}}$$



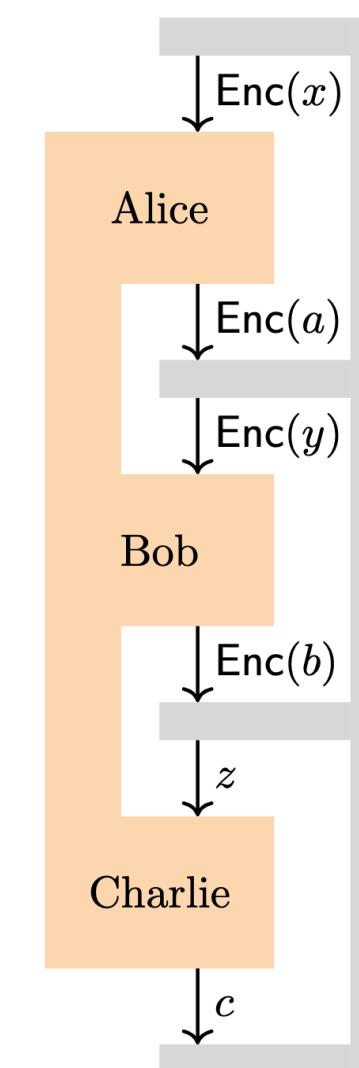
New NPA-like hierarchy for the quantum instruments

- + Solution of the sequential NPA hierarchy at every n
- + Operationally-non-signaling

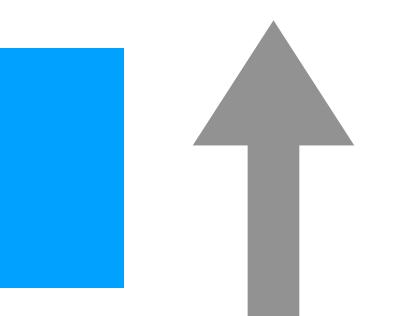
KLVY compiler



For all games, compiles score $\leq \omega_{\text{seqNPA}}^n + \text{negl}_n(\lambda)$

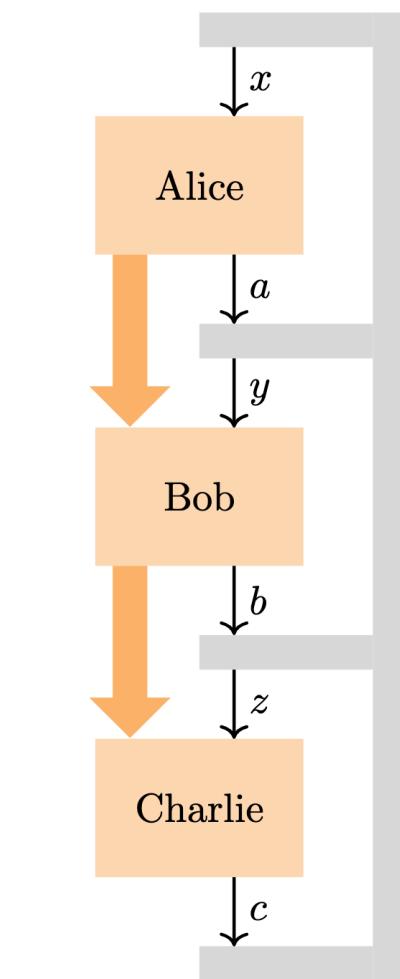


Sequential game

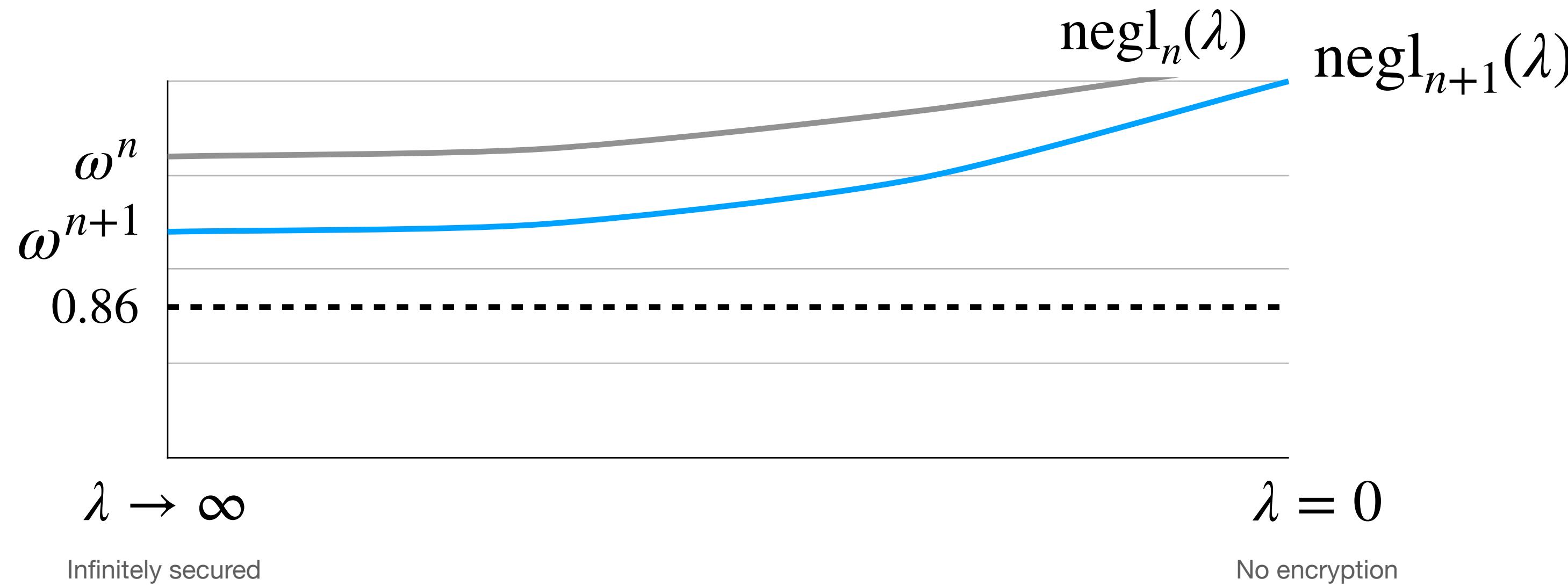


Novel geometric argument: $\text{negl}_n(\lambda)$ -close

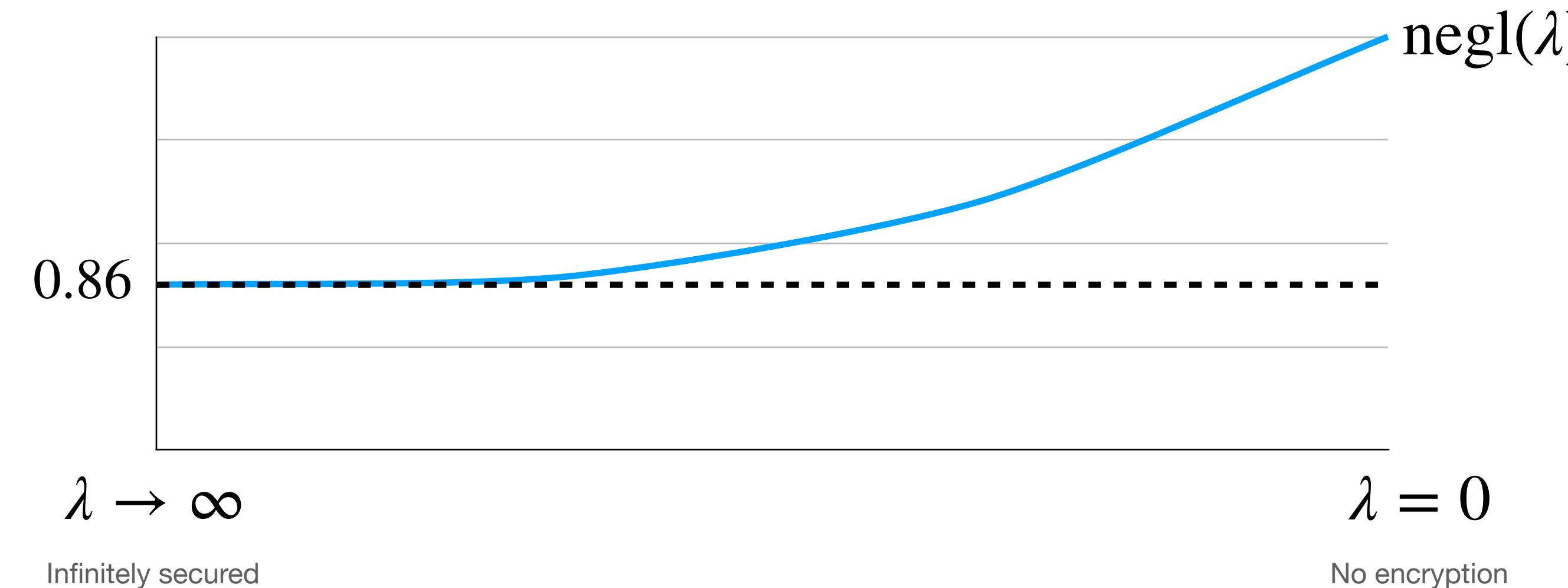
- + Almost non-signaling condition from security against efficient provers
- + Almost-solution of the sequential NPA hierarchy at every n



Main results: [BKLRŠTX25]



In case of finite-dim optimality



Conclusion

- Quantitative quantum soundness: provable bounds of security for compiled nonlocal games at any encryption strength λ
- \implies making compiled nonlocal game a practical venue to test Bell nonlocality with a single untrusted quantum computer
- New NPA-like hierarchy for quantum instruments/completely positive maps \implies Potentially useful beyond this context
- More generally, replace other information theoretical assumptions with cryptography?

The three papers

- [BLJŠ25] arXiv: 2507.12408, accepted by SODA 2026. *Bounding the asymptotic quantum value of all multipartite compiled nonlocal games.* M. Baroni, D. Leichtle, S. Janković, I. Šupić
- [KPRSTXZ25] arXiv:2507.17006. *Quantitative Quantum Soundness for Bipartite Compiled Bell Games via the Sequential NPA Hierarchy.* I. Klep, C. Paddock, M.-O. Renou, S. Schmidt, L. Tendick, X. Xu, Y. Zhao
- [BKLRŠTX25] arXiv:2509.25145. *Quantitative quantum soundness for all multipartite compiled nonlocal games.* M. Baroni, I. Klep, D. Leichtle, M.-O. Renou, I. Šupić, L. Tendick, X. Xu